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1. Basics of Quantum 
Computing

 



Goal 

• Review of quantum simulation algorithms, with a focus on state-of-the-art methods 
and key ideas.

• I will assume that you are comfortable with the standard quantum mechanics, e.g., 
braket notation, Born rule, etc.

• Today: Basics of Quantum Computation



Quantum Computing



Speed of existing quantum computers

• Using your laptop, you can perform a 64-bit integer addition in less than a 
nanosecond.

• Quantum computers available today need at least 10ns~100ns, even microseconds, 
to  apply a single elementary gate.

• One would need 10s of layers of such gates to perform the integer addition, leading to 
at least 100~10,000-fold slowdown compared to your laptop.

• Everybody is saying that quantum computer is more efficient than a classical 
computer. What’s happening here?



Asymptotic Scaling

• While the existing quantum computers are small and slow, technology will eventually 
advance, making them larger and faster.

• In that regime, it is important to understand the asymptotic scaling of the time needed 
to do the computation.



Example: Shor’s algorithm

• Peter Shor famously came up with the factoring algorithm in 1994.

• This algorithm uses at most   quantum gates, where   is a numerical constant and 
  is the number of bits in the number you want to factorize.

• On the other hand, the best known method using a classical computer requires a 
number of gates that scales at least  .

• To compare their speed in real time, we can multiply by the time to execute the gates. 
But this only changes the constant.

• Eventually, as   grows, the time needed using quantum gates will be much smaller 
than the time needed using only classical gates.
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Asymptotics

• In computer science, it is very common to use Big-O notations. This is different from 
the physics big-O notation.

•  : There is a constant   such that for a sufficiently large  , 
for some constant  ,   .

•  :   .

•  :  

•  :  

f(n) = O(g(n)) c > 0 n ≥ n0
n0 f(n) ≤ cg(n)

f(n) = Ω(g(n)) f(n) ≥ cg(n)
f(n) = Θ(g(n)) c′ g(n) ≤ f(n) ≤ cg(n)

f(n) = o(g(n)) lim
n→∞

f(n)
g(n) = 0.
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Asymptotics: Short summary
•  :   .

•  :   .

•  :  

•  :  

f(n) = O(g(n)) f(n) ≤ cg(n)
f(n) = Ω(g(n)) f(n) ≥ cg(n)
f(n) = Θ(g(n)) c′ g(n) ≤ f(n) ≤ cg(n)

f(n) = o(g(n)) lim
n→∞

f(n)
g(n) = 0.



Time complexity
• The time complexity of an algorithm quantifies the amount of time needed to run the 

algorithm.

• Obviously this would be a function of the input size  , and in general will be a 
complicated function. 

• The big-O notation will be useful to understand the asymptotic scaling of the time 
complexity.

n



Efficiency
• An algorithm is efficient if its time complexity (and space complexity) is   for 

some  

    ex) An algorithm with the time complexity of   is efficient, even though this 
           is obviously not practical.

• An algorithm   is more efficient than algorithm   if A has a smaller time complexity 
than  .

    ex)   is more efficient than  

O(nk)
k < ∞ .
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Quantum vs. Classical computing: Similarities

• Bits:  
• Elementary gates: AND, NOT, NAND, …
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Quantum vs. Classical computing: Similarities

• Qubits:  
• Elementary gates: 1- and 2-qubit gates
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Quantum vs. Classical computing: Differences

• Every quantum gate is unitary, hence reversible.
• Not every classical gate is unitary.
• Q1: Can quantum computers do everything that classical computers can do?
• Q2: Can quantum computers provide speedups?
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Reversible computation

• It turns out that reversible computation is possible. (Bennett, 1973)
• Basic idea: Use Toffoli gates 

• Conclusion: Any efficient classical algorithm can be made reversible whilst 
maintaining its efficiency.
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Quantum computation

• Both Toffoli gate and NOT gate can be implemented using 1- and 2-qubit gates.
• Therefore, any efficient classical computation can be done efficiently on a quantum 

computer!

• But, quantum computer can do more…



Reversible computation, in superposition

•  

•  

Q: What about the intermediate results in the computation?

∑
x

αx |x⟩ |0⟩ → ∑
x

αx |x⟩ | f(x)⟩

∑
x

αx |x⟩ ↛ ∑
x

αx | f(x)⟩
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Trick: Uncomputation

• Goal: Implement  using   and 
 

|x⟩ |0⟩ → |x⟩ | f(g(x))⟩ Uf( |x⟩ |y⟩) = |x⟩ |y + f(x)⟩
Ug( |x⟩ |y⟩) = |x⟩ |y + g(x)⟩ .I
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Reversible computation, in superposition

 

Fact: Computing   in superposition can be done efficiently on a quantum computer if 
  is efficiently computable on a classical computer.

∑
x

αx |x⟩ |0⟩ → ∑
x

αx |x⟩ | f(x)⟩

f(x)
f(x)



Quantum vs. Classical computing: Differences

• Every quantum gate is unitary, hence reversible.
• Not every classical gate is unitary.
• Q1: Can quantum computers do everything that classical computers can do?
• Q2: Can quantum computers provide speedups?



Quantum speedups

• Exponential speedups: Factoring (Shor), Quantum simulation, …?
• Polynomial speedups: Database search (Grover), Optimization, Monte Carlo 

simulation, …
Modest
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Summary

• Anything you can do classically efficiently, you can do quantumly efficiently as well.
• There are quantum algorithms which are exponentially faster than classical 

algorithms.
• Next lecture: I will be more explicit about the elementary gates.


